Publications

 Primary research papers

  • Reliable CRISPR/Cas9 Genome Engineering in Caenorhabditis elegans Using a Single Efficient sgRNA and an Easily Recognizable Phenotype.
    El Mouridi S, Lecroisey C, Tardy P, Mercier M, Leclercq-Blondel A, Zariohi N, Boulin T.
    G3 (Bethesda) (2017) May 5;7(5):1429-1437.
    CRISPR/Cas9 genome engineering strategies allow the directed modification of the Caenorhabditis elegans genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted. Second, the detection of animals carrying genome edits can be challenging in the absence of clearly visible or selectable phenotypes. Third, the sgRNA target site must be inactivated after editing to avoid further double-strand break events. We describe here a strategy that addresses these complications by transplanting the protospacer of a highly efficient sgRNA into a gene of interest to render it amenable to genome engineering. This sgRNA targeting the dpy-10 gene generates genome edits at comparatively high frequency. We demonstrate that the transplanted protospacer is cleaved at the same time as the dpy-10 gene. Our strategy generates scarless genome edits because it no longer requires the introduction of mutations in endogenous sgRNA target sites. Modified progeny can be easily identified in the F1 generation, which drastically reduces the number of animals to be tested by PCR or phenotypic analysis. Using this strategy, we reliably generated precise deletion mutants, transcriptional reporters, and translational fusions with epitope tags and fluorescent reporter genes. In particular, we report here the first use of the new red fluorescent protein mScarlet in a multicellular organism. wrmScarlet, a C. elegans-optimized version, dramatically surpassed TagRFP-T by showing an eightfold increase in fluorescence in a direct comparison.
  • Microtubule severing by the katanin complex is activated by PPFR-1-dependent MEI-1 dephosphorylation.
    Gomes JE, Tavernier N, Richaudeau B, Formstecher E, Boulin T, Mains PE, Dumont J, Pintard L.
    Journal of Cell Biology (2013) Aug 5;202(3):431-9.
  • Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex.
    Richard M, Boulin T, Robert VJ, Richmond JE, Bessereau JL.
    PNAS (2013) Mar ;110(11):E1055-63.
  • Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit.
    Boulin T, Rapti G, Briseño-Roa L, Stigloher C, Richmond JE, Paoletti P, Bessereau JL.
    Nature Neuroscience (2012) Oct ;15(10):1374-81.
  • Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance.
    Boulin T*, Fauvin A*, Charvet C, Cortet J, Cabaret J, Bessereau JL, Neveu C.
    British Journal of Pharmacology (2011) Nov ;164(5):1421-32 ; Epub ahead of print Apr 12
  • A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.
    Jospin M, Qi YB, Stawicki TM, Boulin T, Schuske KR, Horvitz HR, Bessereau JL, Jorgensen EM, Jin Y.
    PLoS Biology (2009) Dec ;7(12):e1000265
  • The Small, Secreted Immunoglobulin Protein ZIG-3 Maintains Axon Position in Caenorhabditis elegans.
    Benard C, Tjoe N, Boulin T, Recio J, Hobert O.
    Genetics (2009) Nov ;183(3):917-27.
  • Eight genes are required for functional reconstitution of the C. elegans levamisole-sensitive acetylcholine receptor.
    Boulin T*, Gielen M*, Richmond J, Williams DC, Paoletti P and Bessereau JL.
    PNAS (2008) 105(47):18590-18595.
  • Mos1-mediated insertional mutagenesis in Caenorhabditis elegans.
    Boulin T, Bessereau JL
    Nature Protocols (2007) 2(5):1276-86.
  • A novel Eph receptor-interacting IgSF protein provides C. elegans motoneurons with midline guidepost function.
    Boulin T, Pocock R, Hobert O.
    Current Biology (2006) 16(19):1871-83.
    Comment by Quinn CC, Wadsworth, WG. Current Biology, 2006 ; 16(22):R954-5.
  • Developmental regulation of whole cell capacitance and membrane current in identified interneurons in C. elegans.
    Faumont S, Boulin T, Hobert O, Lockery SR.
    J. Neurophysiology (2006) 95(6):3665-73.
  • Characterization of Mos1 Mediated Mutagenesis in C. elegans : A Method for the Rapid Identification of Mutated Genes.
    Williams DC, Boulin T, Ruaud AF, Jorgensen EM, Bessereau JL.
    Genetics (2005) 169(3):1779-85.
  • Differential functions of the C. elegans FGF receptor in axon outgrowth and maintenance of axon position.
    Bülow H*, Boulin T*, Hobert O.
    Neuron (2004) 42(3):367-74.
  • Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in the C. elegans ventral nerve cord.
    Aurelio O, Boulin T, Hobert O.
    Development (2003) 130(3):599-610.

 Review articles

  • From genes to function : the C. elegans genetic toolbox.
    Boulin T, Hobert O
    Wiley Interdisciplinary Reviews : Developmental Biology (2011) Nov ;1(1):114-137.
    This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
  • Reporter gene fusions
    Boulin T*, Etchberger JF*, Hobert O.
    WormBook (2006) Apr 5 ; 1-23.

 Book chapters

  • Neuroinformatics for C. elegans: Relating Mind and Body in Wormbase.
    Chen N, Lee RYN, Altun ZF, Boulin T, Sternberg PW, and Stein LD. Neuroscience Databases: A Practical Guide. Edited by Rolf Kötter. Kluwer Academic Publishers. October 2002.
 Back to Top